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ABSTRACT

\

’JA comp lex humerlcal model to compute the behaviour of an arbitrarily
shaped ice floe In ocean waves is proposed and discussed. The model has two
independent and decoupled phases: firstily the motions and pressures are
found for a totally rigid ice floe; and secondly the assumption of
rigidity is relaxed so that the flexure may be computed from the under-ice
pressure loading. Finite element techniques are used in the latter
caiculation so as to retain maximum generality. A detailed discussion of
the method 1is glven with speclél attention paid to the problems
encountered in its development. The mode! is demonstrated in both a static
and dynamic sense for an ice floe of simple cross~sectional shape in waves

of various period.

Although no detalled comparison with recorded wave data can be carried
out at this time, a brief section discussing the application of the model

to east Greenland data is inciuded.
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1. INTRODUCTION AND DISCUSSION

Since 1959 when Gordon Robin used a ship-borne wave recorder aboard RRS
John Biscoe to measure waves in the Antarctic (Robin, 1963), the Scott
Polar Research lInstitute has been involved In studies relating to the
interaction of ocean waves with pack ice. A series of papers and reports
have been published which have used novel techniques for studying
penetration of waves into fields of ice floes, and which have posed such
questions as: a) what happens to the open ocean energy spectrum as it
travels through pack ice; b) what effect do waves have on a particular
distribution and concentration of ice floes; c) how does an individual ice
floe behave when subjected to ocean waves? These questions have led to
several in situ experimental programs which have taken place off
Newfoundland, in the Bering Sea, and In the Greenland Sea (see for example
Wadhams, 1973a, 1973b, 1978; Squire and  Moore, 1980; Squire and
Martin, 1980; Moore and Wadhams, 1981). This work has been almost totally
experimental except for the model originally proposed by Wadhams in
his 1973 Ph.D. dissertation. Using a method devised by Hendrickson (1966),
with corrections for sign errors, Wadhams (1973b) approximated the ice
floe as a thin elastic plate on deep water. By using a potential matching
method, he was then able to find approximate solutions for the waves
beneath and on either side of the floe. Unfortunately, the matching could
not be carried out perfectly and as Wadhams points out, there are
additional unknown potentials In each reglon which must be included to
form the complete solution. The derivation of these potentials represents
a formidable task and no exact solution has been found to date even for
the |inearised equations. More recent work (Squire 1978) has concentrated
on another weakness of the early studies, namely In the modelling of the
material properties of sea ice, rather than on the lack of sophistication

In the hydrodynamics.

Clearly, to be able to answer questions a) and b) above one must first
be able to answer question c) since the behaviour of the component Ice
floes must control the dynamics of the complete ice field. The matched
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potential approximation Is inadequate if one wishes to include all the
motions (including bending) of the iIndividual ice floes, but nonetheless
has provided a reasonable fi+ to experimental data collected over the ice
pack as a whole. Current interest has, however, bsen centred around the
determination of the characteristics of motion and flexure of a solitary
Ice floe In waves, For this problem, the matched potential approximation is
grossly in error and predicts unrealistic values for the wave‘generafed
loads and motions. Two consecutive field seasons in east Greenland waters
have been carried out with the prime objective of measuring the dynamics
and flexing of discrete ice floes under wave loading. Surface strain, heave
and sway were measured aboard several floes of different shape and
dimensions, and the waves in the open water near the floes were recorded
during the experiment. The two seasons were both extremely successful and
have produced a data base which has been analysed during the last year to
produce power spectra, frequency response functions between forcing and
response, etc. The results have prompted the present study, whereby a
theoretical model which is able to compute all the motions of an ice floe
as well as its flexural behaviour without the approximations involved In
potential matching, has been developed. The modet! is numerical throughout

due to the complexity of the mathematics.

During the analysis of the east Greenland dataset, the author carried
out an extensive survey of the |iterature relating to the mathematics and
physics involved in the interaction of waves with sea ice. The problem for
an individual floe Is not unlike that encountered by naval engineers who
are interested in the motions and bending of ships at sea. The modern
history of this subject began with Ursell (1949a), who formulated and
solved analytically the complex mathematics which arise when a semi-
Immersed circular cylinder is allowed to move sinusoidally in a fluid.
Subsequent work general ised Ursell's cross-section to shapes of particular
interest to ship designers. Much more recently, the probiem has been
reformulated so as to be suitable for solution by numerical methods. In
principle this enables all the motions of a body of arbitrary shape in
waves to be computed, so that from the naval engineers viewpoint the

problem |s essentially solved.

Section 1 2 Introduction
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Despite the obvious similarities between our problem and that of ship

design and englineering, there are very important differences. A naval
engineer asks different questions and requires accurate estimates of
particular parameters which are not necessarily of interest in the present
study. Furthermore, the mechanical properties of sea ice and steel are a
wor ld apart so that whereas the rigid body approach may well suffice for a
mathematical mode! of a ship in waves, It certainiy would not suffice for
an ice floe. For this reason very little work of suitable application
could be found on wave induced flexure of ships, so that the author chose
to take a novel approach which stili| aliowed any cross-section shape to be

analysed.

In this report we will lay down the framework of a method which can be
used to compute both the wave-induced motions and the bending for any
fioating object in waves. The discussion Is naturally directed towards
calculating the response for ice floes since this was the problem
originally posed. The model is equalily applicable to any floating or
submerged body in waves however, so that the method is far more general
than this work indicates. In -.idition to our ice floe studies we have
already been able to use the model to compute the motions of a large
tabular iceberg. The calculations show resonances In heave, roll and
strain which are also observed in field data obtained during a recent

Antarctic field season.

Section 1 3 Introduction
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2. THE MOTIONS OF ICE FLOES IN WAVES

2.1 Introduction

The motions experienced by a floating ice floe or berg in waves are the
rectilinear motions of heave, surge and sway, and the rotational motions of
pitch, roll and yaw as shown in fig. 2.1 (after McCormick, 1973). The waves
would also tend to bend the ice as they passed beneath, but for the purpose
of the present discussion we will make the plausible assumption that the
flexural character of the floe is negligible In comparison to the large
"rigid body" motions it experiences. The flexural problem wilil be

discussed in a later section.

In order to solve the six equations which result from the motions, it Is
first necessary to make 2 series of simplifications. We assume that the
water in which the ice is afloat, is inviscid, Incompressible and
irrotational so that a velocity potential satisfying Laplace's equation
exists. Further, we assume that the motion amplitudes and velocities in the
waves are small enough that the equations of motion may be |inearised.
Finally we two-dimensionalise our analysis so that we only consider the
motion of a section of the Ice floe (this simplification leads naturally
to the so called strip theory of naval engineering, see section 3.4).
Sub ject to these assumptions, the problem and its boundary conditions are

well-posed and in principle may be formulated and solved.

2.2 Mathematical Foundation of the Model

The complete solution of the floating body probiem may be written down
in terms of three separate Laplacian potentials representing incoming

waves, diffracted waves, and waves generated by the body's motions. These

potentials may, since we have adopted a linearised approach, be added

Section 2 4 Rigid Body Motions
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together to create the velocity potential which represents the total fluid
disturbance. Many of the analytic solutions in the |iterature are
concerned with the evaluation of the wave-making potential since in
laboratory experiments one wishes to know exactly how a particular wave
f lume behaves hydrodynamically (see for example Ursell, 1949a, 1949b). The
difficuity arises when the complete potential for the floating body
problem is required, and various other simplifications have been‘employed

by naval engineers for the motion of ships in waves.

When a body undergoes motion within a fluid it behaves as though it has
increased inertia or mass (Lamb, 1962). This is a hydrodynamica! effect
known as added mass which for cyclic motions will be frequency-dependent.
Furthermore, the oscillating body will use energy in creating and
maintaining the outgoing waves it generates. This leads to a frequency-
dependent damping force in our system of equations. The evaluation of both
added mass and damping for arbitrary shaped bodies, at various incident
wave periods, is extremely complex. Also the calculation of the diffracted
wave potential poses difficulties for all but the simplest of geometries.
There is motivation, therefore, for simplifying the equations of motion by
neglecting the above quantities. A selection of possible approximations
which could be used to model the motion of ships in waves are discussed in
detail by Lee (1976). Lee choses to consider five possible cases: a) added
mass, damping and diffraction are neglected; b) damping and diffraction
are neglected and the added mass is set at the displaced fluid mass; ¢) as
previous case except that diffraction is included; d) added mass and
damping are treated correctly but diffraction is neglected; e) compiete
theory. The assumption that diffraction effects may be omitted Is

sometimes known as the Froude-Krylov hypothesis, and is equivalent to the

supposition that the motions of the body do not alter the particle motions
of the fluid although the particle motions Influence the body. Lee carried
out the analysis for both floating and submerged bodies, and found in the
former case that the inclusion of frequency-dependent added mass and
damping were essential, and that with no diffraction the computed results
(for the sections he chose) were between 20% and 30% in error. For ice
floes in waves therefore, it is important that no such approximations be

made.

Section 2 6 Rigid Body Motions
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There are two procedures which have commonly been used to «olve the
floating body problem. The first of these, known as the multipole expansion
method, was originally developed by Ursall (1949a) for circular cylinders,
and was later applied to sections of arbitrary shape using conformal
mapping (the Theodorsen +transformation). The second, and more recent
technique, represents the problem by a Fredhoim integral equation of the
second kind, and then approximates that equation by a system of |inear
algebraic equations. Other procedures exist and are described in detail in
an excellent review by Wehausen (1971). The present author's work utilizes

a computer program based on the second method.

The program to model floating bodies in waves was originally developed
by Frank (1967). Frank approximated the body's cross-sectional contour
with a number of nodal points joined by straight Iine segments. He then
used the complex source potential of Wehausen and Laitone (1960), subject
to an additional velocity boundary condition across the cylinder’s
surface, to derive a pair of integral equations. By assuming that the
source strength varied from segment to segment but was constant along each
segment, Frank was able to write down a set of linear algebraic equations
which could be solved numerically. The advantage of this method over the
multipole method is that many terms are required in the Theodorsen mapping
to treat bodies of non-simple cross-sectional shape. Initial problems
concerning wave periods at which no solution to the integral equation
exists (John, 1950) and bodies of unsuitable section, have now been

overcome (C.M. Lee, personal communication, 1980).

The modified version of the program originally developed by Frank has
been implemented on the IBM 370/165 computer at the University of
Cambridge. Prof. C.M. Lee of the Naval Ship Research and Development Center
in Washington D.C., and the present author encoded three versions of the
program; one to derive reflection/transmission characteristics of
symmetric lce floes, one to compute the motions of an asymmetric body, and
one which Included a viscous roll damping which was particularly directed
towards iceberg problems. The |atter two programs use extended precision
arithmetic but still typically run within a few seconds CPU time per wave
frequency. The program has been tested many times for various cross-

sectional shapes and compares well with experimental resulits (see for
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example Frank, 1967; Lee, 1976). With this in mind the author does not
propose to repeat these tests, instead we will run the program for an ice
floe of realistic dimensions In waves of typical period, and will
qualitatively discuss the results by comparing with laboratory

exper iments in the |iterature.

2.3 Simulation of the Motions of an lce Floe

In this, and in subsequent sections, we shall consider an ice floe of
typical east Greenland dimensions, vfz. 20m beam by 3m thickness. The ice
floe will be assumed to be of simple rectangular shape with a density of
922.5 Kg m'3. Neither the shape nor the dimensions are significant and any
ice floe whose cross-section is a simply connected region and which could
adequately be represented by Frank's polygonal approximation, could be
model led. The ice floe is now assumed to be acted apon by waves between 1s
and 20s period. The amplitude of these waves is normalised to Im so that
any plots of heave, sway or roll magnitude may be thought of as the
amplitude of the frequency response function for the floe, and plots of
pressure are specific to that amplitude. Furthermore, the Incident waves
are assumed to be beam-on to the ice floe in all cases so that only heave,

sway and roll motions will be non-zero.

We begin in fig. 2.2 by plotting the added masses for heave and sway,
and the added moment of Inertia for roll. The added masses have been non-
dimensionalised by division by the mass of the fluid displaced by the
floe, and the added moment of inertia with respect to that mass multiplied
by the radius of gyration about the centre of roll. Both the added mass and
the added moment of inertia curves compare well with those computed by
Vugts (1968a) for various cross-sectional contours. There is the same
characteristic increase in added mass for heave as period increases, and
the same minimum at some point defined by the body's shape, indicating as
we suspected, that any theory which neglects the dependence of added mass
on frequency would be unacceptable. The added mass for sway and the added
moment of inertia for roll show little dependence on period except for

short period waves.

Section 2 8 Rigid Body Motions
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The various damping coefficients plotted in fig. 2.3 have been non-
dimensionalised in a similar way to the added mass curves, with the
addition of an extra factor representing the radian frequency of the
incoming waves. These plots may also be compared qualitatively with those
found in Vugt's paper. The same characteristic maxima in the sway and roll
curves are apparent, but Vugt's heave curves have a maximum. On closer
examination we find that the dependence of heave damping on fréquency is
considerably influenced by the draft/thickness ratio of the floating body;
as draft increases so the maximum decreases and moves towards increasing
period. None of Vugf's cross-sectional shapes have similar draft ratios so
are inappropriate for comparison. A close representation of our ice flose
is to be found in Frank (1967) where the heave damping ratio is presented
for a rectangular section with rounded corners and significant draft.

Frank's curve shows exactly the same behaviour as that in fig. 2.3.

Having computed the added mass and damping coefficients as a function
of period, we are now in a position to evaluate the wave amplitude ratios
due to heave, sway and roll (fig. 2.4). Each of these curves shows a
distinct resonance which occurs at a wave period which is quite likely to
be found in a open ocean wave spectrum, particularly for an under-
developed sea. At a resonant period, the body would tune to the waves so as
to produce an enhanced heave, sway or roll magnitude. For long waves, as
one might expect, the heave and sway amplitudes tend to unity indicating
that the body is simply following the particle motions at the wave
surface. Likewise, the roll magnitude becomes small. As one decreases in
period, so the response of each motion becomes more complicated: the heave
and roll resonate and then decrease so that for waves of less than about
4s periods these motions will not be excited; and the sway magnitude
decreases to a minimum at about 7s, resonates at around 5s and then also
decreases. The complex shape of the sway curve Is interesting since it
means that for our ice floe one would expect to see enhanced or suppressed
component motions at certain wave periods. The shape of the curves is

similar to those measured by Vugts (1968b).

An interesting effect described in that paper is found when the phase
difference between roll and sway is computed as a function of wave period.

This calculation has been carried out and is shown in fig. 2.5. At a period

Section 2 10 rRigid Body Motions i

1
3




e g —

*SIABM wWeaq ulL
20|14 371 wg AQ wpz © J0j SIUDLDL$490d burdwep ayy ¢°2 “bid

S ‘Qoid3d
oz S1 ol S 0
L 08~

1104 HO4 MW ¢
'AVMS GNV 3AVIH
¥Od W g

n Rigid Body Motions

Section 2




L —

[ s R Sy

*S3AEM Weaq SG| Ul 901J 901 wg AQ wgz e 40

(403204 ureb) uoLyouny asuodsas Aduanbauy ay3 4o apnyiidwe ayy p°z 6Ly m
e
[«]
=
>
3
S '‘a0iy3d ©
oz St oL S 0 2
1 v v om
-z
sz I70H
150
AVMS
0-Ss ﬁ o
{04
$33¥530 ‘1108 3AVIH 3an1ndmv
3JAV3IH
szl aNV
AVMS
! . 1 Sl
~
e
2
e}
[
U
v




14

"suoljow AeMS pue | |04 UIIMIDQ BJUBUISLP aseyd Gz *BL

S ‘aoid3d
oL

-

oc-

oz
ov
09
08

oci
ovi
0]}
0218
00¢e

$334930 ‘3ON3YIIAIA 3ISVHI

ons

d Body Moti

igi

R

13

Section 2




which appears to correspond to the minimum in the sway amplitude ratio {
| curve, the phase difference rapidly changes through 180 degrees. Vugts
found this phase change experimentally for various rectangular sections
and in each case the phase altered rapidly near the sway minimum. At low
periods therefore, our roll and sway are in anti-phase, whereas at longer
periods they are in phase. Fig. 2.5 iliustrates the complicated nature of

the coupling which exists between roli and sway.

In fig. 2.6 we see perhaps the most important part of our numerical
calculation as far as this report is concerned. Here we have plotted the

various pressures beneath the ice floe due to the incoming waves. Each of

the three graphs are plotted to different scale to emphasise the curvature

of the pressure fields, so that care should be taken in interpreting the

shape between graphs. The pressure fields are al! plotted at time zero
;f retative to a 15s wave with its crest at the mid-point of the floe. In the ;
bottom figure we see the pressure contributed by each rigid body motion.

: § The heave pressure field is symmetrical about the mid-point, whereas the
jf sway and roll curves are anti-symmetrical as would be expected. The centre
; graph represents the underside pressure for an equivalent but restrained
ice floe. In this case the curve is very neary symmetrical since the wave
period is relatively long in comparison to the beam. For shorter periods
the degree of asymmetry in the restrained pressures increases rapidly. The
, ; complete pressure fieid, being made up of the four component fields, 1
: 4 reflects this asymmetry and is influenced by the anti-symmetric structure
of sway and roll. For the 15s wave case shown, once again the asymmetry is {
small but it is significant as we will discuss in Section 3 where the
rigid body assumption is relaxed and the pressure beneath is aliowed to
bend the floe. )

o R W u

In this section we have presented numerous graphs demonstrating the use
of the recently implemented, hydrodynamic program for evaluating the

F motions of floating bodies in waves. We have not attempted a strict

e

comparison with laboratory experiments for the technique is well-proven
¢ and the program wel |-tested. Rather, the approach has been to look at the
values calculated by the program for the sort of ice floe we are likely to

! be working with, and to interpret those vatues qualitatively by means of

laboratory experimental reports In the |llterature. The mode! revealed

Section 2 14 Rigld Body Mot ions !

v




PRESSURE, Nm2x103

19-16
19-15
19-14
19-13
19-12
19-11
19-10
19-09
19-08
175
174
173
17:2
171
170
169
16-8

30

20

1-0

-10

Fig.

T T M Y T T T

COMPLETE
PRESSURE -
FIELD

L
3 4
- .
. P . - A - P A A 2
T Y g T T T T T T
L 4
- 1
2 4
i RESTRAINED
I ICE FLOE <
L] ¥ T L L4 Ll Lj L] T
L / HEAVE
[ ROLL
[ SWAY 1
2 4 6 8 10 12 14 16 18 20

DISTANCE ALONG ICE FLOE. m

2.6 The component and the complete pressure fields beneath
a 20m by 3m ice floe due to 15s beam waves. Note the scale
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structure that could not have been predicted without an intensive series
of scaled laboratory or field experiments, which would be prohibitably
expensive. The existence of resonant peaks within the bandwidth of a
typical open ocean spectrum is extremely relevant since this woulid
considerably influence any experimental values measured aboard the ice
floe. The anti-phase/in-phase relationship of sway and roll is also very
interesting and is worth investigation under field conditions by means of

tiltmeters and sway accelerometers.
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3. FLEXURAL BEHAVIOUR OF ICE FLOES IN WAVES

3.1 Introduction

In the first part of this article we discussed and demonstrated a
powerfu! method for evaluating the rigid body motions of an ice floe or
iceberg subjected to incoming waves. The numerical method was able to cope
with an arbitrarily shaped two-dimensional section of the body and compute
five out of the six rigid body modes. The sixth mode, surge, has little
effect on the pressure beneath the floe so can safely be neglected without
undue loss of accuracy. In this section we aim to relax the fundamental
assumption of rigidness and allow the fioe to bend as the wave propagates
beneath. The basis of our entire analysis is the hypothesis that to first
order, the flexural behaviour and the rigid body behaviour may be
decoup led. As far as the fluid is concerned, this is equivaient to saying
that the particle motions beneath the wave profile do not feel the body
bend. Thus, from a hydrodynamical point of view, our assumption is
extremely reasonable since typical flexural displacements lead +to
extremely small floe curvatures which can have negligible influence on the
fluid motions. Certainly the more important consideration Is, what is the
effect of decoupling our calculations as far as the ice floe's response is
concerned? Essentially, the wave-ice interaction problem is a resonance
problem (R.E.D. Bishop, personnal communication, 1981) so that feed back
mechanisms between flexural and rigid body behaviour are not necessarily
negligible particularly close to natural frequencies of oscillation or
f lexure. Naval architects have for many years tended to overlook these
problems and have obtained quite reasonable results with relatively
simple models (often assuming the Froude-Krylov hypothesis). We proceed
with our more complete but decoupled solution with +this in mind.
Comparisons of our model with real data are regarded as the ultimate test
of the decoupling procedure and will be carried out in a later paper. A

preliminary comparison of data and theory Is presented in section 4.

Section 3 17 F lexural Motions




The rigid body program described earlier is not restricted in any way
to simple geometrical cross-sections. As long as the ice beneath the

water|ine can be effectively modelled by a topologically simple curve, and

hence by a collection of points on that curve, the program may be run and
the modes and sub-ice pressures computed. It is clearly possible to then
use these pressures to find the strain at the surface of a floating ice
floe by means of a thin plate analysis (Timoshenko and Woinowsky-
Krieger, 1959). The author began this work by adopting such a procedure. An

elementary computer program was written based on the Duhamel integral

method of Timoshenko et al (1974) and discussed more fully in

Goodman et al (1980) with reference to ice islands and ice floes. The
program is capable of computing the strain as experienced by a strain
gauge located anywhere along the floes upper surface. Good agreement with
observations for thin floes was obtained though the discrepancies between
theoretical and measured strain became significantly worse as the

thickness increased.

In many ways a thin plate theory is a step backwards since we have been
forced fo restrict a very general modei! to the oversimplified geometry of
a thin plate. By doing this we have destroyed any capability of solving
more interesting problems such as: how does a floe with a siil or an
undercut bend on waves; what effect would a keel beneath the floe have on
its total response; how would a cracked floe respond; etc. |f we want to
solve such problems, it is clear that no amount of analytical work will
yield solutions for floes of such arbitrary shape and specification. We

are forced to turn to numerical methods.

There are two popular numerical procedures by which this sort of
problem may be solved. Both are extremely general and both could well be
used to compute stresses and strains etc. for arbitrary shaped floes given
some pressure loading. Both methods have well-defined advantages and

disadvantages.

The first method historically is that of finite difference analysis,
whereby the partial differential equations for the problem to be solved,
and its boundary conditions, are expressed in their finite difference

forms. A matrix equation may then be constructed and solved by means of

Section 3 18 Flexural M. ions




some sort of iterative procedure such as successive over relaxation or an

equivalent technique. The main drawback of this method is that it is
difficult to generalise to arbitrary geometries since by its very nature,
the matrix equation set up Is specific to the geometry and the grid
pattern chosen. This implies that any finite difference analysis tends to

be very problem specific.

The second and more recent method was developed with the advent of
large main-frame computers. In this technique, known as finite element
analysis, the body is replaced by a "patchwork" continuum of smaller
bodies with exactly the same physical properties. The choice of the word
"patchwork" is deliberate for it emphasises the fact that each element has
the same characteristics as the complete body. These elements are assumed
to be interconnected along their boundaries at a discrete number of nodal
points whose displacements prescribe the displacement of the element as a
whole. By expressing the element's state of deformation (or strain) in
terms of a uniquely defined displacement function, and by considering the
appropriate nodal forces, boundary stresses and distributed loads, it is

then possible to write down the so-calied stiffness relations for each

element and hence for the entire body. Clearly there are certain
topological restraints which should be applied to the continuum since
overlapping of elements or their separation to form holes or cavities
cannot be permitted. Unfortunately, such restraints imply continuity of
nodal displacements between elements which can only be satisfied in the
limit of an infinitesimally fine discretization, so that a degree of
approximation is inherent In the finite element technique. The matrix
equations formed Iin this way may be solved to give the body's
disp lacements, strains or stresses by one of the standard numerical
procedures., For a more detailed description of finite element methods the
reader Is referred to Desal and Abel (1972) or Zienkiewicz (1972). It is
this method that the author has chosen to model the ice floe in waves

problem.

Section 3 Flexural Motions

bl




ST

.S g,

e ra

3.2 The Sub-lce Pressure Field

t

Throughout this work we will assume that our ice fioe is of simple
rectangular cross-section. Typical east Greenland floe dimensions of 20m
across by 3m thickness are chosen as before though of course the
simplicity of the geometry and the particular dimensions chosen are
unimportant. With this model, a rigid body calculation as described in part
1 of the report may be carried out and the pressure field computed beneath
the floating ice floe for a variety of incident wave periods. For a 20m
floe, 16 nodal points will produce the pressure field as shown in fig. 3.1.

The ice floe can then be allowed to bend to this pressure field.

From the point of view of surface strain, the edge pressures will have
little effect on an instrument located near to the centre of the floe. The
edge pressures are therefore neglected for the present analysis. Indeed,
these pressures will very nearly cancel one another out as far as the
rigid body part of the calculation is concerned (in a symmeterised
analysis they would be equal and oppositel). The pressures beneath the floe
are defined at isolated positions along its underside, but none-the-less
they must represent a smooth and continuous upward pressure distribution.
This distribution will be slightly asymmetric in a complete analysis since
one would expect the wave to be effected by the ice floe. |+ would be quite
feasible to use the sampled pressure fleld to solve the bending problem.
However,such a grid spacing would be extremely coarse and would no doubt
produce unacceptable accuracy when the computation was carried out. For
this reason, the author has chosen to use the sampled pressure +to
regenerate the "original" distribution by means of interpolation. The
method employed for +this reconstruction 1is a well-tested numerical
technique which creates an interpolate curve by patching together a series
of cubics. The Interpolate is continuous and has continuous first
derivatives. By this method, the upward loading due to the static wave
profile may be found at any point along the underside of the ice floe. In
principal the loading may then be applied to a finite element model and

the resulting displacements and principal stresses found.
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3.3 Preliminary Discussion of the Finite Element Model

In practice it is somewhat more complicated to solve the equivalent
finite element problem. Three important questions should be asked: a) if we
have reduced the ice floe to an equivalent finite element representation,
do we have to redistribute our loading in any way so as to effectively
mode! the upward pressure with minimal error; b) it Is clear that the
pressure beneath the ice floe will tend to move the ice floe upward as
well as bend it, Is such a displacement permissible and if not, how do we
cope with it; c) does the fact that the ice is floating in water
significantly effect the stress/strain calculations? Each question will

be answered in turn.

a) Distributed loading: Despite our having interpolated the pressure
loading so that we are free 1o compute the upward force at any point
beneath the floe, it is still effectively a sampied distribution. This
implies that once we have settled on our finite element spacing, we
still have at best a trapezoidal-type loading pattern (fig. 3.2). One
possibility would then be to average the loads in some way along the
under-ice element boundaries. This method is inaccurate however and a
better way is to compute the distributed load which does the same work
on the finite element grid as the pressure distribution would do on the
real ice fioe. For trapezoidal loading, the calculation involves the
combination of uniform and |inearly varying pressure. Suppose we have a
set of elements as shown in fig. 3.3, then the equivalent distributed
loading for a trapezoldally changing pressure is as shown where the
composite loads are applied at mid-side nodes. The method for computing
this algorithm is not dissimilar to that of Simpson's rule of numerical
integration, With the above loading pattern, applied both at the
corners of elements and at their mid-sides, the work done by the load on
the mesh is equivalent to that done by the original pressures on the

ice floe. By this means, the maximum accuracy possible will be retained.

b) Rigid 3ody Displacement: Initially, the rigid body effect produced by
the upward pressure distribution was disregarded, and the stresses and
strains computed at the maximum machine precision possible. This mathod

is unsatisfactory for two reasons: first that for any graphical output,
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the bending is burlied within the much larger rigid body translations;
and secondly that computing time substantially increases when maximum
precision is used throughout. 1+ was soon clear that some alternative
procedure was necessary. R.D. Henshel | (personnel communication, 1981)
suggested that either the rigid body part of the loading should be
removed so as to produce an integrated load which did no work on the
ice floe, or an enhanced gravity field should be applied so that the

total upward pressure was opposed exactly by the downward body forces. :

The first method is by far the simpler to implement routinely so that
the present author has adopted that method. The original and the
transformed pressure distributions are shown schematically in fig. 3.4
where in the second diagram the shaded area must sum to zero. When this
procedure is implemented, increased pracision computation can be
limited to the displacement calculations alone, and the stresses and

strains may be found using less computer time and machine storage. f

c) From a common sense viewpoint, the fact that the ice Is afloat must be
significant since without the presence of the underiying water, an
unrestrained ice tloe would simply move skyward an indefinite amount
under upward loading. One solution might be to restrain the body at
some node within the finite element mesh. Such a procedure would yield
reasonable bending displacements but introduces unrealistic stress
concentrations near the constrained node and is therefore
unsatisfactory. A better procedure would be be to consider exactiy what
happens when a floating body is forced upwards by a small distance.
Suppose that our ice floe is raised by an amount § , then an opposing
pressure of magnitude pwgd will act so as to restrict translation.
This implies that the water beneath the floating body Is behaving as a
spring with modulus equal to p,g. We say that the ice is behaving as
though bonded to an elastic foundation of modulus 0y9. Returning to
the finite element model, therefore, we represent the flotation part of
the problem by connecting a series of grounded springs to the elements
on the underside of the ice floe. The equivalent distribution of
springs (so that the spring loading does the same work on the finite
elements as would the real buoyancy forces on the floe) is computed by

assuming a uniform downward loading of the mesh.
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We have discussed three basic questions which are encountered when the
finite element method is applied to Iice-wave interactions. We may now

proceed with a more detailed discussion of the method employed.

3.4 Apptication of the Method

By its very nature the rigid body calculation discussed in the previous
section is a two-dimensional strip theory. That is to say that if three-
dimensional results are required, the body is assumed to be made up of two-
dimensional elemental strips or cross-sections which may be totally
decoupled from one another. The program may then be run for each cross-
section and the results integrated so as to simulate a three-dimensional
floating body. The strip theory has been fully tested over the years and
has proved reliable in computing the rigid body behaviour of a variety of
underwater forms. Indeed, there is little justification in developing a
fully three-dimensional theory since the theoretical and the measured

results show excel lent agreement (C.M. Lee, personnal communication, 1980).

When one allows the body to bend under the wave loading however, the
ef fectiveness of a two-dimensional model is not nearly so well-defined.
The author knows of no equivalent technique which has been compared with
experimental data in any way, so that although it is tempting to treat the
bending as a strip theory, such a step must be regarded as an untested
hypothesis. |t should also be noted that whereas the reduction of the full
three~dimensional rigid body analysis to a series of two-dimensional
strips is conceptually easy to grasp, particularly for beam waves, this is
not the case when a body is allowed to bend. In general, stress and strain
are tensorial quantities and when simplification is made into a planar or
cross-sectional analysis, care must be taken in both defining the problem
and in interpreting the resuilts. This is particularly true when icebergs
are considered since all three dimensions are of comparible magnitude. tt
is important to appreciate that the behavior of a two-dimensional section
is not the same as that of an equivalent plate of arbitrary thickness. The
first case is a problem of plane strain whereby any displacement into the
third dimension is assumed to be zero, and the second case would be solved

as a plane stress problem so that the components of stress into the plate
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thickness would vanish. Our cross-sectional strip of ice floe should be

solved In plane strain which fortunately leads to a very simple
relationship between the principal stresses 04,05 and the principal
strains €y, €, material (Jaeger, 1956), viz.

0, (A+2G)e; + Xea,
(3.1)

(A+2G)e, + A€y,

O2

where )\ and G are Lame's parameters, and the convention that the
subscripts 1 and 2 imply greater and lesser principal components will be
used. For icebergs however, the plane strain assumption could lead to
serious errors if the length, breadth and thickness are similar, and
strictly a completely three-dimensional approach should be adopted. With
the limitation of a two-dimensional rigid body strip theory, this might be
carried out in three stages: first the iceberg is considered as a series of
cross-sectional shapes and the pressure loading is calcuiated for each
section; then an interpolate surface is fitted to the pressures in a
simifar way to the pressure curve found in our two-dimensional study;
finally the pressure surface Is used as areal loading in a three-
dimensional finite element model. The author does not propose to
demonstrate the use of this technique In this report since we are

primarily concerned with ice floes.

The numerical scheme for carrying out the finite element analysis was
developed by PAFEC Ltd. in the UK. I+ consists of a sulte of user
orientated Fortran programs capable of dealing with a variety of
engineering-type problems and in principle may be used with little
difficulty once the fundamentals of finite element modelling are
understood. |t is fair to say that we have used finite element modelling in
rather an unorthodox way; we have}applled a very powerful engineering
technique to a compliex geophysical situation. Al{ the difficulties

encountered have been conceptual rather than fundamental.

A suitable grid pattern for our 20m by 3m ice floe was set so as to take

advantage of the geometric simplicity of the original rigid body nodal

pattern. Twenty elements were chosen to represent the floe {engthwise and .

ten elements through its thickness. Tests with finer grids showed iittle
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improvement in accuracy. The finite element mesh is shown in fig. 3.5.

A preliminary numerical simulation was carried out by reducing the
dynamic loading to a static profile defined at the time of maximum
bending. This is by no means a triviai step especiaily for short period
waves, since there exists a phase lag between the original wave passing

beneath the floe and the resulting pressure distribution. When comparing

waves of different periods, therefore, care must be taken to ensure that

the computed strains have been calculated relative to equivalent parts of

the loading. |If the pressure distribution were a simple sinusold it would

be a simple matter to apply the necessary phase shift. For complicated
. pressure fields however, we require some criterion by which to decide how
much the phase should be altered so as to standardise the flexure. The
method adopted uses a finite ditference Iterative procedure to compute
max imum numerical curvature at the centre of the floes upper surface as
the wave moves relative to the floe. The wave is then shifted by the phase
necessary to attain this curvature. The phase shift for long period waves
is negligible but as the period decreases so the phase change becomes more
significant. After this phase translation has taken place, the maximum
stresses and strains would be found near the centre of the top of the ice

f loe.

The static analysis has been carried out for several wave periods in
the range 5s to 25s passing beneath our 20m by 3m floe. For a 15s wave, the
1 loading is close to being symmetric but as can be seen in fig. 3.6, the |
asymmetry of the under-ice pressures is sufficient to slightly tip the ice
floe on the wave. Fig. 3.6 shows the resultant displacement of every point
in the finite element grid representing the floe. Clearly there Iis

significant bending and, as one might expect, the maximum bending

displacement is to be found at the centre of the floe's upper surface.
Returning to the apparent rigid body rotation in the figure, we see that
the angle of inclination is less than one second of arc which seems quite

reasonable for the initial asymmetric pressure pattern.

Having computed the displacements, we are now in a position to find the ]
- stress or strain field within the ice floe. Perhaps the simplest way of
visualising stresses is by means of a stress vector plot. In fig. 3.7 the

.

Section 3 , 29 Flexural Motions
‘.ﬁ ~ " i s ottt it T ——— J‘H‘




e N = -

-
23 ¢ b1
904 Wg AQ wWOZ dY3} J0j ysaw JUBWI|D dJLuLly udsoyd ayl G-¢ °HLy
i ; e J F ; ; S ; F ; N b T
_ _ ; I _ 3 ; ; n ) ; i i i J ; ) 3
oo + llllll l“ IIIIIII L_ IIIIIII l“ ||||||| L- IIIIII lul ) 1 1 - 1 1} 1] - T v VT .|l| CoTTTTT .lll T
- 4 . . l. . 1 1. J. d J. -_— o A - . 4, [ N S [ P [ S
v | ) o ' . . " s ) s s . v v " * " .
- J J 3. - . J - . d. 2. . ) ) ) (RS . [ S R P N Ao P R
i ’ ! 1] + ! ' 1 1 1 i ] t 1 ) ] [} T i
4 4 H T 4 R, ao. J J | 4 a e I T, S oo Ao dee o JF SR
' ] t ] ' ' ' 1 ’ 1 1 1 t ] 1 ' + ' t
|||||| Luf:n.|.|E.-'c|._||a‘|v|._o||.|‘.Ln-:‘u:.r:l'..Lc.:||||._|u||||||_-||:|...|||.|||L|||||||L|||nu.:Lu-u:n.Ln::n.L-.--»y.L|v.|v||Ll||...-L:n..':L::‘:.-g
) i . . v + | | ' " s . \ ) ) | R .

llllll rltlllIIQIll|VALillllllLlllll.|LllllllIL|l|lllIL'lllillL|IIl|IlLllIIIIILIIIIIIIL|IIIIIILIllllliLlllllllLlllll.ILIII!.I!L!!IIIIILl'llu¢|L|||lv1lL]lllll
] ll 1 ] ' ' t ] ] 1 ) * 1] 1] ] 1 1 ! ]
....... I T ISP UpRp At MU S MO KU AP E RO S A SR U o

v ' 1 t ] 1 1] ] ] 1 1} . t t v L} * 1 i m
...... .r..,.-...-----I,L:.-,-v.r---.-..7.-;!L.:.-:.Ln.,.»..Lu.-.:.L:-v‘u.L|v-.-|.._|.||||...:-.-.-T-,---..r--u.--._,-'v.-.L..:---‘L..-.,-..“.-..ly.r...--.q
1 i i ] 4 J ] i 11 I i i I 1 J i i |

- - e ————— —— cam——
— J‘I -
. - .. . }:
— - LA Ed o) - -

Flexural Motions

30

Section 3



e s g

R

"uoirje|suedl Apoq pibra uybLs

9Y3 930N °dABM SG| e 03 3np juswade|dsLp [eanxal} 3yl 9°g *Hig

w
c
o
-
e
(=}
=
—
<
S
3
>
[}
—
[V

oo '} eI nl
R i 3 P 1y T Al
i i g T .- JF-—— ) e —
iaSS ) ) ) — =
= e - 2l === J
||||||||| P S S PR PRt 2 —
e e—vs . —— —— PRI P 3o ————
S —— [P O e P 4 R Lag
[ T S e SRR I e Sl JIE I T
e e N [P YIRS e
[ndala ot [PPSR SRS P i 2 RS TE i s |
————2 g -

LT S R e s d

P i

lllll e d mmeed - - -

S

————— e P s N e

...... [ S I T
[ VU Sy

Section 3




;‘tLL

» Section 3

IR RN S22 222227220
11175 571000%%X Y 1 §
[1117#7750003335\\
1117720000000\ |
It ///mx\\\\%\
[117#m000\
{11900\
o300\
JZESA\Y

/é / ﬁ“\\k‘
] .
/ ;

e g e il a3
hinr gty

. S iy

NEMLes M o @S »
M RSO
=

LR
T

PRALS TSl WP o0 BEIPY v WS ¢ G au s |
t ! LS. T

n
FAMLE
Tyt

D e} Sy M <SS & SURP PR L P
Ny Y n
Y T t T "

\ﬁww«aVY [
\\\\wx/// i
|\ oowoooszff
|\\\voeoossr/f |
PN S sasnrnsppff ] ]
VAN R RRRKRARLF S F 4

VAN R RRRLARARLIIFI

..... RAAARS S b

32

Fig. 3.7 Stress vector plot for ice floe. The length of each vector

is proportional to the stress at that point and the inclination

is equal to the orientation of the axes of

scale is 219.8 Nm~2
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vectors shown have a length which is proportional to their magnitude and
are plotted with the correct angular translation. Both principal stresses
are shown with the convention that compressive stresses are drawn with end
bars whereas tensile stresses are not. The principal stresses form the
pattern that one would expect for a simple body of this sort. We seec
extensional stresses above the neutral axis and compressional stre:ises
beneath. In a fully dynamic analysis this situation would reverse mid-

cycle.

An alternative means of displaying the stress pattern is by means of a
contouring routine which draws lines of constant stress on the two-
dimensional cross-section (fig. 3.8), Here we see that so long as we do not
venture too close to the edges of the ice flos, the isopleths are parallel
to the upper and lower surfaces. Such a result would be expected in a thin
plate theory. The contouring routine shows clearly that the maximum
tensile stress is to be found at the central position on the floe's upper
surface, and the maximum compressive stress located directly beneath that

on the underside.

Bearing in mind that ultimately we wish to test our model with the Sea
lce Group's strainmeters, we have converted the principal stresses to
principal strains by means of equations (3.1). This has been carried out
for all nodes along the floe's upper surface where the smaller principal
strain is several orders of magnitude smaller than the larger. The
directions of the axes of principal strain are such that the larger strain
Is horizontal. Fig. 3.9 shows this strain along the Ice floe. From this
graph we may say that the maximum strain experienced by a 20m by 3m floe
due to a 15s wave of Im amplitude is 5.5><10'8 and that this value occurs
near the floe's centre. As an aside we may use this value to determine
whether or not such a wave could fracture the floe and if not, what
amplitude would be necessary to break it. With an empirical fracture
strain of 3.0x10™2 (Goodman et al, 1980) we see that fracture is unlikely

to occur.

The change in strain through the floe is shown in fig. 3.10. As one
would expect for an Iisotropic material, the straln vanishes mid-way

through (i.e. on the neutral axis), and the largest absolute principal
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strain at the surface is equal In magnitude but opposite in action to the

equivalent under-ice strain.

A novel way to view the strain field is shown in fig. 3.11 where the
tensile and compressive principal strains have been plotted as surfaces.
The neutral axis 1Is clearly marked on each three-dimensional
| representation. The plots should be interpreted with reference to fig. 3.7
. where the orientation of the princlipal axes may be seen in the angular
variation of the stress vectors (for a isotropic material In plane strain,

the principal axes of stress and strain are aligned).

The final figure of this subsection, fig. 3.12, shows how an ice floe of
twenty metre beam and three metre thickness will behave as ocean waves of
various periods pass beneath. The curve plotted is normalised relative to
an incident wave amplitude of Im so that this should not be regarded as
the floe's response to a spectrum of waves, but rather as the magnitiude of
the frequency response function or gain factor (Bendat and Piersol, 1971)
of time series analysis. The curve represents surface strain as measured
by an imaginary Instrument located at the centre of the ice floe. As one 1
might expect, the strain at different wave periods is by no means constant.
For very long waves the radius of curvature of the wave is large so that
the floe bends only by a small amount leading to small surface strains. For
short waves, the radius of curvature is small and in principle one might
expect very large strains. This Is not the case however, since both the
magnitude and the gradient of the pressure along the bottom of the floe
decrease rapidly as the perlod becomes very short. There is an optimum

period which will produce maximum strain and therefore maximum |ike! ihood

of fracture. For the present floe this period is about 4s which is close to
the period at which resonance occurs for heave, sway and roll. This does
not necessarily mean that if energy of that period Is avallable in the
spectrum it will fracture the ice floe; rather we are saying that [f the
spectrum were such that all frequencles were represented by equal amounts
of energy and that energy was sufficient to break the floe, then waves of

period 4s would be the most |ikely to do so.
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Fig. 3.11 Three-dimensional schematic showing the largest absolute
principal strain through the ice floe.
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3.5 Dynami~ Analysis

The limitations of a static theory are not nearly so bad as one might
first suppose. So long as the pressure loading does not tune to the floe's
natural frequencles, the computed displacements and strains are reasonable
and are believed to accurately model the flexure. However, static analysis
tells us nothing about those natural frequencies so that resonance in
flexure, which could foreseeably lead to the floe's ultimate destruction,
is glossed over. Ideally, one would Iike to be able to compute the cyclic
strains induced as the wave propagated beneath, look at those strains with
passing time, possibly allowing the ice to deteriorate with time by some
sort of fatigue mechanism, and then at the end of the simulation say
something about the floe's survival. The problem is of course that such an
analysis is prohibitably expensive and even if run, the results would be
questionable due to the uncertainty of the physical properties of sea ice.
For these reasons the author has not attempted such a mammoth task as
implementing the necessary programs. The resonance problem still remains
however, and it Is important to be able to discuss the natural frequencies

if one is to fully interpret the static analysis.

We first pose the question: what Iis the fundamental frequency of
flexural oscillation and what are the frequencies of the first few
harmonics for an 20m by 3m ice floe floating in calm water? We will refer
to these frequencies as modes of oscillation. With no restraints applied
there will exist three rigid body modes (for a two-dimensional section)
which correspond to heave, sway and roll. In the present discussion we
suppose these modes to be Irrelevant and will consider the first mode of
interest to be the primary flexural mode. We shall also |imit our study to
bending or flexural modes since more esoteric oscillations, such as
tensional /compressional vibrations which might be induced by an explosion

within the ice, are unlikely to be excited by ocean waves.

The determination of the natural frequencies of a body can be
simplified so that it is equivalent mathematically to a symmetric real
eigenvalue problem. For a finite element mesh which reasonably represents
the body, one would expect a large number of nodes to be present. Each node
is permitted, for a two-dimensional section, to move In two orthogonal
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directions known as degrees of freedom. |t is clear that even though the
problem can be reduced to a symmetric eigenvalue problem, we are |ikely to
need a very large number of degrees of freedom to produce accurate results
so that our matrices are huge. This would lead to unacceptably long CPU

times and worse, to rounding errors.

Fortunately, many of the degrees of freedom in a large eigenvalue
problem have little effect on the eigenvalues themselves. We may therefore
simplify our analysis further by reducing the problem to finding the
natural frequencies of an equivalent structure with less, but carefully
selected, degrees of freedom. The selection of the remaining "master
freedoms™ is by no means simple and will not be discussed here; PAFEC

Iincludes a facility to do this.

A modal analysis of our ice floe was carried out so as to compute its

natural frequencies. The first few modes are |isted below:

MODE FREQUENCY, HZ
1 19.13270 + 0.00013
2 47.28252 + 0.00002
3 82.75792 + 0.00001

These modes correspond to fig. 3.13a,b and ¢ respectively. The error bounds
are approximate but have all been calculated so as to include the
numerica! error. |t must be emphasised that these errors are an estimate
of numerical accuracy. They do not In any way bound the absolute error
caused by the approximations involved in using a finite eclement

representation of the "real™ ice floe.

Since the natural frequencies of any structure form an orthogonal set,
any general distortion of the body may be regarded as the infinite sum of
the modal distortions (for a system with an Infinite number of degrees of
freedom). In any real analysis this summation may be discontinued after
the first few modes since the series converges rapidly. Our ice floe is no

execption and we will retain only the first few frequencies In subsequent
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calculations [1]. We are now in a position to reconsider the wave loading

and to determine the dynamic response due to waves passing beneath. 1f any
of the wave periods encountered were close to a mode, resonance would
occur, but in any realistic situation frictional forces within the
material would damp the resonance sufficiently to prevent Infinitely
large strains. However, the resonant stresses produced might well be large
enough to permantently weaken the Ice floes and to ultimately cause it to
break up. A secondary effect of the damping Is to shift the body's natural
freqencies so that the Incident waves could foreseeably tune to modes at
lower frequencies. This shift Is second order however, and for small
damping ratios is negliglible. The most convenient way to impose damping on
the system of equations is to allow the material's physical properties to
become complex quantities. For the 20m by 3m ice floe, the modes occur at
frequencies which are well outside the significant energy regions of
typlical open ocean spectra, so that resonance Is unlikely. For this reason
damping is really only necessary for calculations where broad bandwidth
spectral observations are applied. In this case there is a possibility
that a minute amount of high frequency energy present in a spectrum might

lead to an unreal istic resonance.

As the size of the floe increases, so the natural frequencles decrease
though the modal shapes remain the same. For an iceberg, there is a
distinct possibility that the frequencies will shift sufficientiy to be
within the bandwidth of the wav: energy of the sea. The tanker Pine Ridge
broke in two in the Western Atiantic during December 1960 due to resonant
stresses set up during a storm, so icebergs of similar and larger
dimensions might well break-up by the same mechanism. When the natural
frequencies of flexure are computed for a typical Antarctic iceberg it is
found that the first flexural mode could easily be encouraged to resonate
by the available ocean wave energy. Ms. Monica Kristensen, a research
student at SPRI under the author's supervision, is currently considering
this mechanism In the Iinterpretation of Iceberg data obtained during a

recent Antarctic cruise aboard HMS Endurance. Her work will be published

(1] The number of master degrees of freedom chosen for the dynamic
solution is finite so that we have already approximated the sum to
some extent.
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in due course. In conclusion then, the author agrees with the original
suggestions by Goodman et al (1980) that resonant stressing due to waves
is a significant factor if not the predominant mechanism In the ultimate
destruction of icebergs.

Returning to our discussion of sea Ice we emphasise that resonant
stressing is unlikely to occur with any real ocean loading since the
dimensions of typical ice floes are too small. In fig. 3.14 the vertical
displacement and phase response of some arbitrary point within a 20m by 3m
ice floe are plotted alongside the equivalent static response at various
wave loading frequencies. The curves plotted have been normal ised so that

they are with respect to incident waves of unit amplitude. The small

difference betwesen the static and dynamic results is most probably due to
rounding error, and contamination by the rigid body modes in the dynamic
solution. These errors will increase as the wave period decreases. Even so,
the reader will see that the curves agree well and that no resonance is
occurring within the bandwidth of energy considered. This confirms that
the destruction of ice floes by resonant stressing is unrealistic, and
further demonstrates that our static model Is adequate for stress or
strain calculations. |If the phase change between the loading and the
resulting flexural displacement is required then a dynamic model is
necessary since it is clear from fig. 3.14 that the phase depends

critically on wave period.
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4, PREL IMINARY COMPARISON OF THEORY WITH EAST GREENLAND DATA

4.1 Introduction

The previous sections have enabled us to compute theoretically all the
parameters that have been measured in a series of wave experiments carried
out by SPRI on sea ice in the Arctic. These results are reported or will be
published elsewhere 1in great detail. See for example Squire and
Moore (1980), Squire and Martin (1980), Goodman et al (1980), and Moore
and Wadhams (1981). However, it was felt that no theoretical model could

really be presented without some experimental verification.

The 1979 field programme in east Greenland had two principal aims:
a) to quantify the motions of a single ice floe in waves; and b) to measure
the attenuation of waves through pack ice in the fjord and to relate this
to ice morphology. Several projects of type (a) were carried out and the
author has chosen one of these experiments to test the proposed model. The
comparisons are by no means exhaustive since suitable instrumentation to
measure roll, pitch and yaw was not available during the field trip, and
only a small subset of the recorded data is considered. Furthermore, the
only data available for comparison at this time is not ideally suited as a
test of the proposed model. The experiment we will discuss took place
on 14 September over the entire day. Three accelerometers were used to
measure heave, surge and sway, several strainmeters were used to measure
the floe's surface strain field in various locations and directions, and
the sea state was continuously monitored by means of a spar-loaded wave
buoy. Since the field trip the accelerometer data have been analysed as
random time series and have been integrated to give power spectra over
hal f-hour segments throughout the day. By considering the spectrum of each
of the floe-mounted instruments with that produced from the simultaneous
wave buoy record, frequency response functions and coherences have also

been produced which have enabled us to treat the motions of the ice floe
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independently from the Incident wave forcing.

4.2 Results of Comparison

The ice floe upon which our experiments of 14 September took place was
by no means ideal. The floe was approximately 80m to 90m across and
between 3m and 4m thick. A Im to 2m ridge adjacent to a refrozen meltpool
ran along one side of the floe and cut off a smal! flat apron from our
tfield of view. The instruments were deployed on a large area of suitably
flat ice as far as possible from this ridge. For the purpose of the
numerical simyiation several possible floe geometries were coded and
their effects on the resulting motions was studied in detail. For a floe of
this size, it was found that an increase in diameter from 80m to 90m or a
change in thickness from 3m to 4m, had little effect on the resulting
motions. The ridge, however, did appear to influence +the motions
significantly, though in all cases the theoretical curves fitted the data
better when a ridge and its corresponding keel were included in the

geometry.

First attempts at a comparison between theory and experiment produced
unsatisfactory resuits. There were clear discrepancies for both sway and
strain, though the heave results looked promising. This can easily be
explained when the location and drift of the ice floe are considered in
relation to the shape and bathymetry of the fjord (fig. 4.1). Throughout
the experiment the floe drifted seawards in deep water at about 1.7 km/hr,

and always remained within a few hundred metres of a steep cliff face.

Waves entering the f jord from the open ocean would experience two effects;
firstiy their spectrum would be distorted due to refraction, and secondly
waves would reflect from the cliffs alongside the ice floe. Neglecting
refraction, we are left with the considerable influence that an almost
perfectly reflecting cliff could have on the motions of ice floes in its
vicinity. For the sake of this argument we shall assume that the cliff is a

perfect reflector for all the wave periods present in the f jord.

Consider a wavebuoy located in the fjord alongside the ice floe
(fig. 4.2). This buoy will measure the superposition of both the incident
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waves and the waves reflected back from the cliff face. When waves from any
direction are considered, the sea sampled by the buoy Becomes very complex.
This is equally true when the motions of the floe ?fself are considered. |f
we consider the motions of heave, sway and strain in turn, we soon see that
a comparison of the data with the numerical model is not possible except

for the case of heave.

For heave, the two vertical accelerometers are used in the same sense,
so that although the fioe is behaving in a very compiex fashion due to the
incident waves, the normalisation carried out during the data processing
Is sufficient to enable a reasonable test of the model to be made. The
heave data from five hal f-hour records are presented as a single frequency
response function in fig. 4.3, where each experiment is distinguished by a
different symbol. Confidence limits at the 95% level are also shown. The
valid range (6s to 15s) marked in the figure represents the range of
energy over which the original power spectra used to generate each plot
had significant energy. Outside this range the gain factors have no
physical meaning and are subject to large rounding error. Frequency
smoothing across fifteen contiguous energy values has been used to
generate each point. The smooth curve plotted on the data represents the
gain factor predicted by theory. There appears to be excellent agreement
between the mode! and experiment over the valid 6s to 15s range of
periods. When a significant keel is included in the geometry of the
numerical model, the theoretical curve changes |ittle for low frequencies,
but as we move toward higher frequencies so the curve moves up

"fractionally so as to centralize itself within the confidence Iimits.

The sway and surge data pose much more serious problems since the
normal isation is no longer réasonable if the wavebuoy record is
contaminated with wave energy reflected from the cliff face. Furthermore,
if we think in terms of normal incidence for a moment, and suppose that the
sea close to the floe is made up of waves propagating in two opposing
directions, then the floe's sway motion will be considerably reduced. Thus
the frequency response functlions created by normalisation of the sway and
surge records with respect to those of the wavebuoy will be very different
from those computed for an open water situation. Unfortunately, it is very

neary Impossible to adjust elther theory or observation, so that the sway
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and surge results can only be discussed in a qual itative sense.

The gain factors of the frequency response functions for the combined
horizontal motions show the same general shape as the theoretical curves
with a resonance between 8s and 10s. However, the gain magnitudes are
considerably smaller than the theory predicts as would be expected from
the foregoing discussion. A detailed comparison must therefore await the
processing of further east Greenland data recorded on floes which were

further off the coast.

The strain data must also be subject to the same contamination due to
waves reflected from the cliffs. As before, the ice floe vill experience a
wave load made up of both standing and travelling waves of a magnitude
which depends on the wave's period. The reflection/transmission
characteristics of the floe will determine Iits subsequent flexural
behaviour. One would expect long waves to have small reflection
coefficients so that most of the wave energy will reach the cliffs and be
reflected back, whereas short waves would be considerably reduced in
ampiitude at the initial reflection from the floe's front edge. This leads
one to tentatively suggest that short waves might be less sensitive to
reflections from the cliffs, so that the theory would provide a better fit.
This Is indeed the case with theory and data being in good agreement for
wave periods less than ten seconds, but becoming unacceptable as the wave

period Is increased.

At this stage then the author can present no better than an explanation
why the data and model produce different results. Until more data are
processed to produce the necessary frequency response functions for floes
which are a reasonable distance from the edge of the fjord, no detailed
theory can model the ice floe's motions. This analysis promises to take at
least two months from the date of publication of this article due to the
complex problems which arise when strainmeter data are processed. A later
paper to be published in the |iterature will provide a more convincing

verification of the proposed numerical model.
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